

lorado Academic Program Assessment Report for AY 2018-2019

(Due: May 24, 2019)

Program:

Chemistry

Completed by: Chad Kinney and David Dillon

Assessment contributors (other faculty involved): Data provided by and report available for review by department faculty. Constructive comments by Jonathan Velasco contributed to this report.

Please describe the 2018-2019 assessment activities and follow-up for your program below. Please complete this form for <u>each undergraduate major</u>, <u>minor</u>, <u>certificate</u>, <u>and graduate program</u> (e.g., B.A., B.S., M.S.) in your department. Please copy any addenda (e.g., rubrics) and paste them in this document, save and submit it to both the Dean of your college/school and to the Assistant Provost as an email attachment before June 1, 2018. You'll also find this form on the assessment website at <u>https://www.csupueblo.edu/assessment-and-student-learning/resources.html</u>. Thank you.

I. Assessment of Student Learning Outcomes (SLOs) in this cycle. Including processes, results, and recommendations for improved student learning. Use Column H to describe improvements planned for 2018-2019 based on the assessment process.

A. Which of the program SLOs were assessed during this cycle? Please include the outcome(s) verbatim from the assessment plan.	B. When was this SLO <u>last</u> assessed? (semester and year)	C. What method was used for assessing the SLO? Please include a copy of any rubrics used in the assessment process.	D. Who was assessed? Please fully describe the student group(s) and the number of students or artifacts involved.	E. What is the expected achievement level and how many or what proportion of students should be at that level?	F. What were the results of the assessment? Include the proportion of students meeting proficiency.	G. What were the department's conclusions about student performance?	H. What changes/improvements to the <u>program</u> are planned based on this assessment?
Students will exhibit a comprehensive knowledge of the fundamental theories and concepts necessary in the chemical sciences.	Data are collected at the end of every semester and assessed annually. The SLO was last assessed in Spring	The ACS Exams Institute provides standardized exams that cover all the major sub- disciplines within chemistry. The chemistry program uses these exams where appropriate (general, organic, physical, analytical,	All students taking core chemistry courses will take the ACS exams (408 ACS exam scores were reported during the 18-19 AY. This is does not represent 408 unique students	Faculty expect that students on average will score at or above the 50 percentile on both the ACS and MFAT standardized exams. However it is historically	Student results on ACS exam where comparison to national data is available, were above the 50 th percentile 28% of the time. This is often true of upper division course that are primarily made up of Chemistry majors. In many cases where the class average percentile is below the 50 th percentile the class average was close to the 50 th percentile. (i.e. 40 th percentil	knowledge of chemist established by the American Chemical Society as well as tested by the MFAT exam, student performance at CSU- Pueblo is generally satisfactory in comparison with the national norms. This is	 performance has been with students in early chemistry courses, especially General Chemistry. This was acknowledged in the recent grant application to the U.S. Dept. of Education that was awarded and supports the CBASE Program. The research program of the CBASE Program is curricular development and piloting of smaller studio style general chemistry coruses, which began F2017. However, cuts to instructional personnel for the 19 20 AY has limited the ability.

2018.	inorganic, and biochemistry). The Major Field Achievement Test (MFAT) is also required of all graduating seniors and is used to assess student knowledge in chemistry.	since many students take multiple chemistry courses, and therefore, take multiple exams in a given AY). Eight students completed the MFAT exams during the 17-18 AY.	observed that students in trailer sections of general chemistry and organic chemistry trend lower than the corresponding regular sequence courses.	and up). This is true of 50% of the instances where class averages fell below the 50 th percentile. We do see that class performance on ACS Exams designed for a given course can vary depending on the exact exam form utilized (e.g. results for CHEM 121 and 122). The MFAT results again demonstrate very favorable performance among senior	especially seen among graduating students. Exceptions to this are at the earlier stages of the chemistry curriculum, which has been an increasing issue based on historic data. Based on ancedotal evidence from instructors, student preparedness continues to be insufficient or declining. Experience suggests that chemistry is not a	 format course with the originally intended scope; decreasing the number of studio sections offered from 2 to 1. Additional efforts to increase active learning strategies have been incorporated into traditional sections of these courses. Intial data based on DWF rates is very promising. However, this is not necessarily reflected in ACS exam scores. Ultimately, the hope is that better student outcomes at the general chemistry level will lead to improved student outcomes in later courses. If successful, the future of studio style courses will be dependent upon adequate institutional support, which barring a significant turnaround in University fineages is uraliated.
					Experience suggests that chemistry is not a subject that poorly prepared students are likely to succeed in without significant remediation. Unless more resources are channeled to address this issue, this lower level of performance is unlikely to change. However, the majority of students completing a degree in chemistry at CSU-Pueblo demonstrate a knowledge of chemistry that exceeds that of most student completing a chemistry degree at other institutions using the MFAT exam as an assessment tool.	

2. Students will	Data are	The ACS Exams	All students	Faculty expect	Student results on ACS	Based on the expected	 4. As part of the Chemistry Department Strategic Plan a group of faculty developed two seminar courses intended to address many of the "soft" skills students need to succeed in chemistry. The first of these are intended as an intervention at the introctory level and the other at a more advanced level. These courses have been approved by the CAPB and will become part of the Chemistry curriculum beginning F2019. However, the overall impact on success among students in early chemistry courses will likely be limited because these courses are only required for Chemistry Majors and a majority of students taking General Chemistry and Organic Chemistry are not Chemistry Majors. The Chemistry Department could not add these new courses designed to improve student success as prerequesites to impact all intended students because this would impact other majors on campus.
exhibit the mathematical and problem-solving skills necessary in	collected at the end of every semester	Institute provides standardized exams that cover all the major sub-	taking core chemistry courses will take the ACS exams	that students on average will score at or th above the 50	exams, where comparison to national data is available, were above the 50 th percentile 28% of the time. This is frequently	knowledge of chemistry established by the American Chemical Society students at	above.
the chemical sciences.	and assessed annually.	disciplines within chemistry. The chemistry program	(408 ACS exam scores were reported during	percentile on both the ACS	true of upper division course that are primarily made up of Chemistry	CSU-Pueblo are generally performing near the national	
	The SLO was last assessed	uses these exams where appropriate	the 18-19 AY. This is does not	and MFAT standardized exams.	Majors. In many cases where the class average percentile is below the	average among their peers at other	
	in Spring 2018	(general, organic, physical, analytical,	represent 408 unique students since many	However it is historically observed that	50 th percentile the class average was close to the 50 th percentile. (i.e. 40 th	institutions of higher education. Performance tended to	
		inorganic, and biochemistry). The Major Field	students take multiple chemistry	students in trailer sections	percentile and up). This is true of 50% of the instances where class	suffer among students in General Chemistry, as well as some upper	
		Achievement Test (MFAT) is also	courses, and therefore, take	of general chemistry and organic	averages fell below the 50 th percentile.	division courses based on ACS Exam Scores.	
		required of all graduating seniors	multiple exams in an given AY).	chemistry trend lower	We do see that class performance on ACS	The majority of students completing a	
		and is used to assess student	Eight students completed the	than the	exams designed for a given course can vary	degree in chemistry at CSU-Pueblo	
		knowledge in	MFAT exams	corresponding regular	depending on the exact	demonstrate an	

	r				a b b b b b b b b b b		
		chemistry.	during the 17-18 AY.	sequence courses.	exam form utilized (e.g. results for CHEM 121 and 122). The MFAT exam scores again demonstrate very favorable performance among senior students with the average overall exam score at the 68 th percentile. Furthermore, 2 of the 8 students tested at or above the 86 th percentile.	knowledge of chemistry that exceeds that of most student completing a chemistry degree at other institutions bassed on MFAT exam results.	
					Summary of current AY and historic ACS and MFAT exam results are included with this assessment report.		
3. Students will be able to research, review and understand the current chemical literature and be able to critically evaluate, write about and professionally present such material.	Data are collected at the end of every semester and assessed annually. The SLO was last assessed in Spring 2018	Although aspects of Learning Outcome Three are incorporated into much of the curriculum, assessment of the third learning outcome takes place during the required senior seminar course, Chem 493 and in other higher level courses. All faculty are expected to attend the student's senior seminar and an evaluation tool is distributed to every member present. Sample evaluation tool included.	Devlopment of the skills required for this SLO occur throughout the curriculum. However, final assessment occurs as part of the CHEM 493- Senior Seminar Course (8 students 17-18 AY).	Faculty evaluations of the senior seminar are pooled and included in the student's grade for the course which is compiled by the instructor of record. Evaluations are given on a 100- point scale and faculty expect students to achieve an average of 70 or better for satisfactory performance.	Enrolled for CHEM 493 during the 18-19 AY was 10 students. One student enrolled for CHEM 493 in both the fall and spring. Eight of the 10 students enrolled in CHEM 493 course were assessed at the 70% mark or better. The "2 students" who did not meet satisfactory expectation was in fact the same student that enrolled for the coruse both fall and spring. In both cases this student withdrew from the course. This particular student has a clear history of withdrawing from courses and requesting extensions on almost all assignments in all courses.	Generally speaking students have developed the needed skills throughout the chemistry curriculum to meet this SLO. This is demonstrated by performance at or above the expected level of achievement in CHEM 493 as assessed by the department faculty as a whole.	Given the performance in meeting this SLO the aspects of the chemistry curriculum designed to meet it appear appropriate at this time. No changes are deemed necessary at this time.

Comments on part I:

II. Closing the Loop. Describe at least one data-informed change to your curriculum during the 2018-2019 cycle. These are those that were based on, or implemented to address, the results of assessment from previous cycles.

A. What SLO(s)	B. When was this	C. What were the	D. How were the	E. What were the results of the changes? If
did you address?	SLO last assessed to	recommendations for change	recommendations for	the changes were not effective, what are the
Please include	generate the data	from the previous	change acted upon?	next steps or the new recommendations?
the outcome(s)	which informed the	assessment?	change acted upon:	next steps of the new recommendations:
		assessment		
verbatim from	change?			
the assessment	Please indicate the			
plan.	semester and year.			
SLO 1 and 2	Data are collected at the end of every semester. The SLO was last assessed in Spring 2018.	Given the low performance in general chemistry courses the faculty are exploring differing pedagogies/course delivery strategies. This will continue. This has included integrated lecture and lab courses in a studio format with a reduced number of students and larger lecture formats with a weekly flipped classroom component and use of engagement through the use of clickers. Previous success with smaller sections of general chemistry courses using the SAFE Course approach was limited to summer offerings. Beginning in 2017 the Department has offered smaller studio courses and data continues to be gathered on the effectiveness of this approach. Traditional lecture options with a flipped classroom component is also being researched/tested. The studio approach was proposed as part of the assessment process 3 years ago, but funding was not available to	Given that the studio approach to General Chemistry requires additional time and effort on the part of the instructor as well as necessitated small class size since the course will have to be offered in a lab setting, grant funding was required to test this approach. One of the two external grant applications proposing the studio approach were submitted, and fortunately one was funded through the U.S. Dept of Education. In addition to the grant funded education research, a simultaneous research project involving a flipped classroom approach to general chemistry will be initiated next AY.	Initial results are promising, but mixed, for both the studio approach as well as the flipped classroom approach. Historically DWF rates in general chemistry have hovered around 50%. Much of this can be attributed to poor preparation of students enrolled in these courses, i.e. usually a lack of adequate math skills upon entering the Univresity. It is difficult to overcome these deficiencies while still instructing the necessary content, especially in a 14-instructional-week semester. Both the smaller setting of the studio setting as well as a flipped approach allows for greater interaction with faculty and peers and greater practice of problems/concepts necessary for success in general chemistry. However, it will take some time to have data to assess the effects of the seminar courses on student performance and will be complicated by the fact that while the first seminar course (CHEM 170) is designed to impact performance at the early stages of a student's chemistry career, it could only be required for Chemistry Majors. Therefore, a majority of students enrolled in general chemistry will not be required to complete CHEM 170. This further means that the Department could not make CHEM 170 a prerequisite or corequisite for CHEM 122 or CHEM 121, respectively. Therefore, assessing the effectiveness of CHEM 170 will require

prog impr com strai deve that	port a pilot until the CBASE grant gram. Other strategies to prove performance was a ponent of the Department's stegic plan resulting in the relopment of seminar courses t enter the curriculum beginning 2019.	tracking individual students and considering the timing in which the course is taken relative to course in the chemistry curriculum.

Comments on part II:

Seminar Score
Abstract (%)
100 point scale

E

Seminar Assessment & Comments

CHEM 493

Student Presenter	
Topic Date	
The objective of the 50 minute talk is to illustrate the student's ability to coherently present information of a specific nature.	
Topic: (10 pts)	
Appropriateness of topic: narrow enough to include specific material while having breadth of interest? Is it sufficiently chemical in nature?	
Is it of general interest? Is it timely?	
Content: (35 pts)	
Is there sufficient chemistry in the presentation? Is the material presented relevant to the topic, correct, well-documented and current? Is it clearly and logically pr	presented?
Organization: (20 pts)	
Does the introduction provide a good overview? Does each topic flow naturally form the previous one? Does the presentation "tell a story"? Is the material appropriate the previous one?	opriate for the intended
audience?	
Drocontotion (20 pts)	
Presentation: (20 pts) Does the presenter maintain good eye contact, and use appropriate strength of voice, while engaging listeners?	
(40 min) Start time Stop time	
Graphics, Diagrams, Figures: (10 pts)	
Do the visual aids supplement the presentation or are they superfluous? Do visual aids fit logically into presentation? Are they discussed in detail? Are they easy to	to read and follow?
Use of Power Point: (5 pts)	
How well was the visual presentation put together? (general appearance, clarity, and legibility of slides; effective use of Power Point).	
General Impressions:	

ACS Final	Semester			Raw Score A	verage			Percenti	le Average	Percentile	Difference
(Exam name & year)	Given	U.S.	Std. Dev.	N =	CSU-P	Std. Dev.	N =	U.S.	CSU-P	Raw	Weighted
				Chemistry E							
				1st Term							
				(CHEM 121)							
1st term (2000) DL	Su 05	39.6	11	,	41.3	11.3	16	51	56	5	80
1st term (2000) LW	Fall 04	39.6	11		44	14	58	51	65	14	812
1st term (1997)LW	Fall 05	39	11	2000	39	12	63	51	48	-3	-189
1st term (1997)LW	Fall 06	39	11	2000	42	11	38	51	57	6	228
1st term (2000)LW	Fall 07	40	11		39	12	73	48	48	0	0
1st term (2005)LW	Fall 08	40	12	4524	38	10	56	48	45	-3	-168
1st term (2000)RF	F08	39.6	11		33.8	9.8	15	51	33	-18	-270
1st term (2000) DL	Su 07	39.6	11		39.1	10.4	16	51	49	-2	-32
1st term (2000) DL	Su 08	39.6	11		42.9	13.2	19	51	61	10	190
1st term (2000) DL	Su 09	39.6	11		45.9	15.1	10	51	70	19	190
1st term (2005) CK	Spring 2010	40.35	12.26	4524	32.05	10.91	65	50	28	-22	-1430
1st term (2009) KP	Spring 2010	37.1	11.4	3827	38.2	11.6	74	51	54	3	222
1st term (2009) RF	F10	37.1	11.4	3827	38.2	12.2	33	51	54	3	99
1st term (2005) DL	Su 10	40.35	12.26	4524	45.08	11.09	22	50	63	13	286
1st term (2009) DD	Su 11	37.13	11.39	3827	36.8	10.3	26	51	50	-1	-26
1st term (2009) CC	F11	37.13	11.39	3827	33.9	11.2	78	51	41.8	-9.2	-717.6
1st term (2009) CC	Sp12	37.13	11.39	3827	34.3	10.7	90	51	42.9	-8.1	-729
1st term (2009) RF	F12	37.13	11.39	3827	37.1	9.1	71	51	50.5	-0.5	-35.5
2nd term (2009) CC	Sp 14	37.13	11.39	3827	34.3	9.4	73	51	43.2	-7.8	-569.4
General Chemistry I 2009 (rev. 2011) CC	F2012	37.13	11.39	3827	36	7.75	17	50	48	-2	-34
General Chemistry I 2009 (rev. 2011)	S2013	37.13	11.39	3827	33.92	9	83	50	42	-8	-664
Gen. Chem. First Term 2009	Fall 2013	37.13	11.39	3827	34.7	9.7	81	51	43.4	-7.6	-615.6
1st term (2009) CC	Sp 14	37.13	11.39	3827	34.3	9.4	73	51	43.2	-7.8	-569.4
1st Term Form 2009 Rev 2011 CC	Fall 2014	37.13	11.39	3827	38.54	12.06	34	51.3	56	4.7	159.8
First Term General Chemistry KP	F2014	40.35	12.26	4524	44.08	10.91	26	50	61	11	286
1st term (2009) KP	Sp 2015	37.13	11.39	3827	34.1	12.2	61	51.3	42	-9.3	-567.3
First Term Form 2009 (CC)	Fall 2015	37.13	11.39	3827	36.78	10.95	74	51.39	50.31	-1.08	-79.92
First Term Form 2005 (CC)	Spring 2016	40.35	12.26	4524	36.69	11.08	64	50.70	41.07	-9.63	-616.32
First Term Form 2009 (KP)	Fall 2016	37.13	11.39	3827	31.69	11.19	35	51	37	-14	-490
First Term Form 2009 (KP)	Spring 2017	37.13	11.39	3827	35.07	10.57	72	51	45	-6	-432

First Term Form 2005 (CC)	Fall 16	40.35	12.26	4524	38.9	11.56	49	50.7	47.7	-3	-147
1st term GC2005 (MC)	F17	40.35	12.20	4024	38.86	9.84	49 14	50.7	47.7	-3.3	-147
1st term GC2018 trial test (MC)	F17 F17	40.35 n.d.	n.d.	n.d.	30.00 39	9.64 8.7	14	50 n.d.	46.7 48	-5.5	-40.2
2005 Gen Chem 1st Term (RF)	F17 F17	40.35	12.26	n.u.	39 46	0.7 11.3	14	51	40 62.8	11.8	212.4
Gen Chem First Term (KP)		40.33 37.13	12.20	3827	33.14	8.80	28	51	40	-11	-308
Gen Chem 1st Term 2005 (MC)	Spring 2018	40.35	12.26	4524	33.14 37.24	10.19	20 17	50	40 42	-11	-308 -136
Gen Chem 1st Term 2009 (MC)	Spring 2019 Spring 2019	37.13	11.39	3827	36	9.80	17	50	42	-0 -3	-130
1st Term 2005 (JV)	Spring 2019	40.35	12.3	5027 N/A	30.69	9.80 7.4	36	49	26.4	-22.6	-813.6
1st Term 2009 (JV)	Spring 19	40.33 37.13	12.3	3827	29.53	6.0	30	49 49	30.1	-18.9	-567
15t Term 2009 (3V)	Spring 19	57.15	11.4	3021	29.55	0.0	30	49	30.1	-10.9	-307
				Full Year (CHEM 122)							
Full year (1999) LW	Spring 05	40.19	10.03	955	37.5	9.5	48	51	41	-10	-480
Full year (1999) RS	Fall 04	40.19	10.03	955	42	12.7	33	51	59	8	264
Full year concept (2001) LW	Spring 05	33.1	11		31.9	9.9	49	53	48.5	-4.5	-220.5
Full year (1999) DD	Su 05	40.19	10.03	955	34.6	7.6	22	51	35	-16	-352
Full year (1999) RS	Fall 05	40.19	10.03	955	43.4	10.8	34	51	62	11	374
Full year (1999) LW	Spring 06	40.19	10.03	955	37	11	41	51	39	-12	-492
Full year concept (2001) LW	Spring 06	33	10		33	11	39	53	53	0	0
Full year (1999) DD	Su 06	40.19	10.03	955	42.4	9.1	20	51	60	9	180
Full year (2005)LW	Sp 07	35.5	11.5	1858	32.2	9.5	47	52	43	-9	-423
Full year concept (2001) LW	Sp 07	31.2	9.99		32.2	9.5	48	52	56	4	192
Full year (2005)LW	Su 07	35.5	11.5	1858	37.7	12.6	11	52	61	9	99
Full year (2005)LW	Sp 08	35.5	11.5	1858	34	11	27	51	48	-3	-81
Full year concept (2001) LW	Sp 08	31.2	9.99		35	11	26	53	60	7	182
Full year (2005)LW	Sp 09	35.5	11.5	1858	36	11	31	51	54	3	93
Full year concept (2001) LW	Sp 09	31.2	9.99		34	14	31	53	56	3	93
Full year (2005) DL	Su 08	35.5	11.5	1858	33	9.7	21	51	42	-9	-189
Full year (2005) DL	Fall 08	35.5	11.5	1858	34.1	16.4	23	51	48	-3	-69
Full year (2005) CK	Su 09	35.45	11.51	1858	36.85	14.09	20	51	58	7	140
Full year (2005) DD	Su10	35.45	11.51	1858	35	9.8	33	51	51	0	0
Full year (2005) KP	Fall 10	34.76	11.29	3201	34.07	10.9	41	51	51	0	0
Full year (2005) DL	Spring 11	35.5	11.5	1858	33.3	10.2	59	51	46	-5	-295
General Chemistry, 2005 MC	Fall 2012	35.45	11.51	900	30.5	10.33	45	51	35	-16	-720
General Chemistry, 1999 MC	Spring 2013	40.19	10.03	900	36.8	8.12	49	51	39	-12	-588
Full year (2005) KP	Fall 10	35.45	11.51	1858	31.88	10.28	41	51	42	-9	-369
Gen, Chem, 2005 MC	F2013	34.45	11.51		31	8.66	39	54	40	-14	-546
	12013	04.40	11.01		01		00	0.	-10	17	0+0

Gen, Chem, 2005 MC												l
Gen. Chem. 1999 MC	Sp2014	34.45	11.51		30.5	9.7	41	54	41	-13	-533	
Gen. Chem. 2001 (Concept) MC	Fall 2014	40.19	10.03		32.65	8.55	42	51	30.4	-20.6	-865.2	
Gen. Chem. 2005 MC	Fall 2014	31.25	9.99		42	17.6	41	51	44	-7	-287	
Gen. Chem. 2005 MC	Spring 2015	34.45	11.51		35.97	10.18	35	48	51.2	3.2	112	
Gen. Chem. 2001 (Concept) MC	Spring 2015 Summer	31.25	10.0		34	7.3	34	51	60	9	306	
Gen Chem 1999 (MC)	2015	40.19	10.03		36.75	8.24	11	51	39	-12	-132	
Gen Chem 2005 (MC)	F2015	34.45	11.5		37.92	11.32	35	48	61	13	455	
Gen Chem 2001 (concept) (MC)	F2015	31.25	9.99		34	9.2	36	51	61	10	360	
Gen Chem 2015 (MC)	Sp2016	41.44	9.38	166	40	8.36	36					prelim data Trial test, no data
Gen Chem 2017 (MC)	Sp2016				36	7.8	33					exists for this exam
General Chemistry 2015 (prelim norms) MC	F16	41.44	9.4	166	52	13.3	33		46.4			
General Chemistry 2001 (Conceptual) MC	F16	31.25	10.0		52.9	15.4	33		48			
General Chemistry 2015 (prelim norms)	Sp17	41.44	9.38	166	57.4	19.2	42		59.1			
Full Year 2015 (JV)	Fall 2017	39.8	10.7	1080	40.69	3.26	39	49	51.9	2.9	113.1	
Full Year 2005 (JV)	Fall 2017	35.45	11.51		30.64	6.87	39	53	37.6	-15.4	-600.6	
Full Year 2015 (JV)	Spring 2018	39.8	10.7	1080	41.5	9.36	29	49	54	5	145	
Full Year 2019 Trial (JV)	Spring 2018	N/A	N/A	N/A	40	8.3	29	N/A	N/A			
Full year GC2019 trial test	Sp18	n.d.	n.d.	n.d.	36.1	11.8	9	n.d.	43			
Full year GC2015 (Prelim norms)	Sp18	38.3	10.6	431	41	11.8	7	n.d.	53			
, , , , , , , , , , , , , , , , , , ,												trial test, no
Gen Chem Full Year trial test 2019 (MC)	Fall 2018				35.55	7.7	11					national norms available yet
Gen Chem Full Year 2001 (MC)	Fall 2018	31.25	939.0		27	5.0	11	51	35	-16	-176	
Full Year 2015 (JV)	Summer 18	39.8	10.7	1080	36.5	6.98	6	49	41	-8	-48	
Full Year 2019 Trial (JV)	Summer 18	N/A	N/A	N/A	30.2	8.98	5	N/A	N/A			
Full Year 2019 Trial (JV)	Fall 18	N/A	N/A	N/A	31.68	6.52	26	N/A	N/A			
Full Year 2001 Conceptual (JV)	Fall 18	31.25	10.0	N/A	27	6.5	24	49	38	-11	-264	
Full Year 2015 (KP)	Spring 2019	39.5	10.8	3195	40.6	8.1	47	50	54	4	188	
					Total S	Students	3392		Average	-3	0	
	0.05	0.1 -		neral Chemis								
Toledo (1998) DL	Su 05	31.5	7.2		31.8	7.2	18	51	51	0	0	
Toledo (1998) DL Toledo (1998) DL	Su 07	31.5	7.2		32.5	8.2	16	51	54	3	48	
	Su 08	31.5	7.2		35.2	9.4	21	51	70	19	399	
Toledo (1998) DL	Su 09	31.5	7.2		34.6	8.1	13	51	67	16	208	
Toledo (1998) RF	F08	31.5	7.2		30.3	7.8	21	51	44	-7	-147	

Toledo (1998) DL	F09	31.5	7.2		30.6	6	63	51	47	-4	-252
Toledo (1998) RF	F10	31.5	7.2		32	9.1	50	51	54	3	150
Toledo (1998) DL	Su10	31.5	7.2		32.7	6.4	28	51	58	7	196
Toleedo pre-instruction (MC)	Spring 2019	31.5	7.2		31.3	5.8	22	48	48	0	0
Toledo post-instruction (MC)	Spring 2019	31.5	7.2		37.8	7.1	18	48	80	32	576
	op	0110			0110						0.0
					Total S	Students	270		Average	7	0
			Orga	nic Chemistr	v						
				CHEM 302	,						
Organic 2002 DD	F 04	43.28	11.83		34.2	7.7	18	48	23	-25	-450
Organic 2002 DD	S 05	43.28	11.83		36.3	7.3	37	48	29	-19	-703
Organic 2004 DD	F05	39.22	12.16	3592	32	8.8	21	50	32	-18	-378
Organic 2004 DD	S06	39.22	12.16	3592	33.1	7.1	41	50	34	-16	-656
Organic 2004 DD	F06	39.22	12.16	3592	35.9	10.8	29	50	41	-9	-261
Organic 2004 DD	Sp07	39.22	12.16	3592	36.8	12.2	42	50	45	-5	-210
Organic 2004 DD	F07	39.22	12.16	3592	36.7	10.3	21	50	45	-5	-105
Organic 2004 DD	Sp08	39.22	12.16	3592	34.7	10.8	38	50	39	-11	-418
Organic 2004 DD	F08	39.22	12.16	3592	35.5	6.9	32	50	41	-9	-288
Organic 2004 DD	Sp09	39.22	12.16	3592	38.2	10.1	28	50	48	-2	-56
Organic 2004 DD	F09	39.22	12.16	3592	34.8	11.8	18	50	39	-11	-198
Organic 2004 DD	Sp10	39.22	12.16	3592	37.4	10.2	35	50	46	-4	-140
Organic 2002 DD	F12	43.28	11.83		34.3	9	12	51.3	24	-27.3	-327.6
Organic 2004 DD	Sp12	39.22	12.16	3592	41.1	11.2	38	50	55	5	190
Organic Chemistry OR04 MD	spring 2013	39	12.16	3592	37.48		40	50	46.5	-3.5	-140
Organic Chemistry 2004 DD	Spring 2014	39.22	12.16		40.1	12	43	51	52.3	1.3	55.9
Organic Chem 2004 MD	F14	39.22	12.16	3592			8	51	25	-26	-208
Organic 2004 DD	Spring 2015	39.22	12.66	3592	38.2	12.8	39	50	47.7	-2.3	-89.7
Organic 2004 (MD)	Spring 2016	39.22	12.66	3592	32	9	19	50	32	-18	-342
ORG 2004 (DD)	fall 2015	39.22	12.66	3593	33.25	11.36	12	50	34.8	-15.2	-182.4
ORG 2004 (DD)	summer 2015	39.22	12.66	3593	33.56	7.02	10	50	35.7	-14.3	-143
ORG 2004 (MD)	Spring 2017	39.22	12.66	3593	41	10	12	50	55	5	60
ORG 2004 (DD)	Fall 2016	39.22	12.66	3593	36.1	13.24	24	50	42.3	-7.7	-184.8
ORG 2004 (CC)	Spring 2018	39	12.16	3592	39.5	10.4	14	50	51.5	1.5	21
Organic Chemistry 2004 (MD)	Fall 2018	39	12.16	3592	33.6	7.4	11	50	35.8	-14.2	-156.2
Organic Chemistry 2004 (MD)	Spring 2019	39	12.16	3592	36.2	12.5	35	50	42.6	-7.4	-259
				CHEM 301							

Organic 1st 2006 DD	F06	37.83	9.81		33.8	9.2	48	50	37	-13	-624
Organic 1st 2006 DD	Sp07	37.83	9.81		31.6	6.5	24	50	28	-22	-528
Organic 1st 2006 DD	F07	37.83	9.81		33.4	9	54	50	35	-15	-810
Organic 1st 2006 DD	Sp08	37.83	9.81		29.6	7.2	35	50	22	-28	-980
Organic 1st 2006 DD	F08	37.83	9.81		36.3	7.9	50	50	46	-4	-200
Organic 1st 2006 DD	F09	37.83	9.81	1560	37.7	8.9	58	51	51	0	0
Organic 1st 2006 DD	Sp10	37.83	9.81	1560	32.6	8	29	51.3	31.8	-19.5	-565.5
Organic 1st 2006 DD	F10	37.83	9.81	1560	35.6	9.9	47	51.3	43.4	-7.9	-371.3
Organic 1st 2006 PV	Sp12	37.83	9.81	1560	35.2	10.4	28	51.3	43	-8.3	-232.4
Organic 1st 2006 DD	F11	37.83	9.81	1560	36.3	9.6	58	51.3	51	-0.3	-17.4
1st Term Org Chem (OR06F) DD	spring 2013	37.83	9.81	1560	39	8.19	34	51.3	55	3.7	125.8
1st Term Org Chem (OR06F) DD	fall 2012	37.83	9.81	1560	38.2	10.7	65	51.3	53	1.7	110.5
Organic 1st term 2010 ZL	Sp 14	39.39	11.74		29.3	6.8	23	52.2	21	-31.2	-717.6
Organic 1st term 2010 ZL	Sp 14	39.39	11.74		29.3	6.8	23	52.2	21	-31.2	-717.6
First term organic 2006 DD	Fall 2013	37.83	9.81		37.3	10.3	48	51	49.1	-1.9	-91.2
Organic 1st term 2010 DD	Fall 2014	39.39	11.74	1933	39.8	11.2	48	52	53	1	48
Organic 1st 2006 MD	Spring 2015	37.83	9.81	1560	32		24	51.3	30	-21.3	-511.2
Organic 1st term 2006 (MD)	Fall 2015	37.83	9.81	1560	33	8	35	50	33	-17	-595
ORG 1ST TERM 2010 (DD)	spring 2016	39.39	11.74	1933	34.29	11.75	38	52	38.2	-13.8	-524.4
ORG 1ST TERM 2010 (DD)	spring 2017	39.39	11.74	1933	37.8	22.69	45	52	47.4	-4.6	-207
Adv Organaic 401/501 2004 (MD)	Fall 2016	39.22	12.66	3593	60	4	3	50	94	44	132
Organic Chemistry, 1st term, 2010	Spring 2018	39.39	11.74	1933	31.1	9.16	40	50	26.3	-23.7	-948
ORG 1ST TERM 2010 (DD)	Fall 2018	39.39	11.74	1933	32.7	11.5	52	52	31.7	-20.3	-1055.6
ORG 1ST TERM 2017 (DD) (prelim norms)	Spring 2019	34.8	11.8	680	32.8	5.8	27	53.4	48.2	-5.2	-140.4

					Total	Students	1613		Average	-10	-9			
ACS Final	Semester			Raw Score A	Verage			Percenti	le Average	Percentile	Difference			
(Exam name & year)	Given	U.S.	Std. Dev.	N =	CSU-P	Std. Dev.	N =	U.S.	CSU-P	Raw	Weighted			
Biochemistry (CHEM 412)														
Biochemistry 2003 SB	Spring 04	35.4	9.3		29	5.7	4	50	26	-24	-96			
Biochemistry 2003 SB	Spring 05	35.4	9.3		26	5.8	3	50	17	-33	-99			
Biochemistry 2003 SB	Spring 06	35.4	9.3		31	1	3	50	34	-16	-48			
Biochemistry 2007 SB	Spring 07	32.9	8.9		24	2.7	3	53	18	-35	-105			
Biochemistry 2007 SB	Spring 09	32.9	8.9		30	4.1	7	53	39	-14	-98			
Biochemistry 2007 SB	Spring 10	32.9	8.9	839	38.5	4.5	4	53	72	19	76			
Biochemistry 2013 SB	Spring 12	24.53	6.41		29.1	1.24	4	NA	NA					
Biochemistry 2007 SB	Spring 13- UG	32.9	8.9	839	28.7	4.4	3	53	36	-17	-51			

Biochemistry 2007 SB	Spring 13-G	32.9	8.9	839	36.8	7	5	53	62	9	45
Biochemistry 2012 SB	Spring 2014	32.9	8.9	839	34.1	8.14	10	53	55.3	2.3	23
Biochemistry 2012 SF	Spring 2016	32.9	8.9	839	30.4	5.04	9	53	50.73	-2.27	-20.43
Biochemistry 2012 SB	Spring 2017	34	8.92		35.8	17.6	10	50	51.7	1.7	17
Biochemistry 2012 SB	Spring 2018	33.96	8.92	n/a	31	7.1	11	33.5	38.5	5	55
Biochemistry 2012 SB	Spring 2019	33.96	8.92		27.5	10.13	8	33.5	30.5	-3	-24
					Total S	Students	84		Average	-8	-4
			Phy	sical Chemis	try						
P-Chem Comp. (1995) RS	Fall 04	31.3	9.2	442	35.0		1	53	67	14	14
P-Chem Comp. (1995) RS	Fall 04	31.3	9.2	442				53		-53	0
P-Chem Thermo. (1996) RS	Fall 04	21.3	7.1					53		-53	0
				CHEM 322							
P-Chem Quant. (1995) RS	Spring 05	21.6	5.8		18.7	6.2	10	53	34	-19	-190
P-Chem Quant. (1995) RS	Spring 06	21.6	5.8		19.4	7.9	7	53	40	-13	-91
P-Chem Quant. (1995) RF	Fall 08	21.6	5.8		24.8	7.4	17	53	63	10	170
P-Chem Quant. (1995) RF	Fall 09	21.6	5.8		24.9	6.9	13	53	64	11	143
P-Chem Quant. (1995) RF	Fall 10	21.6	5.8		25.6	4.2	8	53	69	16	128
P-Chem Quant. (1995) RF	Fall 12	21.6	5.8		28.9	6.1	10	53	63	10	100
2006 P Chem (Quantum)	F13	29.2	7.8		29.3	6.1	12	51	49.7	-1.3	-15.6
Quantum Mechanics 2006 (RF)	Fall 2015	29.19	7.8	n/a	29.9	5.7	14	51	53.5	2.5	35
Quantum Mechanics 2006 (RF)	Fall 2016	29.19	7.8		29.1	7.6	10	51	51	0	0
Quantum Mechanics 2013 (JV)	Fall 2017	27.11	7.1	354	27.4	13.1	11	54	39.8	-14.2	-156.2
Quantum Mechanics 2006 (RF)	Fall 2018	29.19	7.8		30.4	5.3	12	51	52.1	1.1	13.2
				CHEM 321							
P-Chem Thermo. (1996) RS	Fall 04	21.3	7.1		20.6	4.3	8	53	51	-2	-16
P-Chem Thermo. (1996) RS	Fall 05	21.3	7.1		18.4	5.4	12	53	40	-13	-156
P-Chem Thermo. (2006) RF	Spring 09	26.4	7.0		26.4	7.2	19	51	51	0	0
P-Chem Thermo. (2006) RF	Spring 10	26.4	7.0		28.2	8.8	18	51	56	5	90
P-Chem Thermo. (2006) RF	Spring 13	26.4	7.0		29.3	6.4	11	53	61.8	8.8	96.8
2006 P Chem (Thermo) RF	S14	26.4	7.0		24.1	4.5	16	52	40.7	-11.3	-180.8
2006 P Chem (Thermo)	Spring 2015	26.4	7.0	n/a	26.7	7.6	14	51	51.4	0.4	5.6

Thermodynamics 2013 (RF) Thermodynamics 2013 (RF) Thermodynamics 2013 (RF)	Spring 2016 Spring 2017 Spring 2018	27.48 27.6 27.6	6.5 6.8 6.8	378	30.31 31.6 26.9	8.74 5.9 5.9	16 9 10	52 52	71 46	19 -6	171 -60	*** No national norms for this exam yet onl mean, median, and standard deviation value based on 378 students
Thermodynamics 2013 (RF)	Spring 2019	27.6	6.8		25.6	6.2	9	52	41.3	-10.7	-96.3	
					Total S	Students	230		Average	-4	0	- T
			norganic Cl	nemistry (CH	EM 221)							
1991 Inorganic LW	Spring 05	23.9	8	419	27.8	6.6	4	54	69	15	60	
Inorganic (2002) CC	Spring 12	28.4	8.1		31	0	2	52	66	14	28	
Inorganic 2009 MC	F2013	31.79	8.95	482	20.6	7.98	18	51	11.8	-39.2	-705.6	
Inorganic Chem. 2009 MC	Fall 2014	31.79	8.95		26.13	10.13	15	51	37	-14	-210	
												Trial test, no national data
Inorg. Chem. Foundations 2016 MC	F2015				31.6	5.8	15					exists for this exam yet.
Inorg. Chem. Foundations 2017 MC	Fall 2016	31.8	8395		57.75	26	13		53.5			
												Trial test, no national data
	50040		10.11	400		0.05	45					exists for this
Foundations of Inorganic, 2016 (MC)	F2018	33.96	10.14	122	33.5	6.65	15					exam yet.
												Ţ
				nemistry (CH								
Inorganic 2009 MC	Sp2014	31.79	8.95	482	38	7.5	7	51	69.3	18.3	128.1	
Inorganic Chem 2009 MC	Spring 2015	31.79	8.95		39.8	7.5	5	51	77	26	130	
Inorganic Chemistry 2009 (MC)	Sp2016	31.79	8.95	482	41.7	6.7	3	51	87	36	108	
Inorganic Chemistry, 2002 (MC)	Sp2019	28.38	8.1		36.5	2.1	2	49	85	36	72	
					Total	Students	97		Average	8	-5	

 Analytical Chemistry (CHEM 317)

 Analytical Chemistry 1994 DC
 Fall 04
 19.5
 6.3
 233
 18.8
 5.3
 12
 54
 51
 -3
 -36

Analytical Chemistry 1994 DC	Fall 05	19.5	6.3	233	17.9	4.5	18	54	45	-9	-162
Analytical Chemistry 1994 CK	Fall 08	19.47	3.37	233	18.76	4.62	18	51	51	0	0
Analytical Chemistry 2007 CK	Fall 10	27.5	7.1	707	28.8	6.7	16	52	59	7	112
Analytical Chemistry 2007 KP	Fall 10	27.5	7.1	707	33.5	5.6	6	52	81	29	174
Analytical Chemistry 1994 CK	Fall 11	19.47	3.37	233	25.9	5	9	51	88	37	333
Analytical Chemistry 2007 CC	F2012	27.52	7.08	707	28	7.36	10	50	55	5	50
Analytical Chemistry 2007 CK	F 2013	27.52	7.08	707	28.11	6.21	19	52	56	4	76
Analytical Chemistry 2007 KP	Fall 2014	27.52	7.08		26.0	7.3	13	52	44	-8	-104
Analytical Chemistry 2007 CK	F 2015	27.52	7.08	707	25.8	6.5	18	52	42	-10	-180
Analytical Chemistry 2014 KP	Fall 2016	26.14	7.14		28.4	9	8	50	65	15	120
Analytical Chemistry 2014 CK	Fall 2017	26.14	7.14		27.0	5.16	14	50	58	8	112
Analytical Chemistry Form 2013 (CC)	Fall 2018	26.14	7.14	779	25.73	4.29	11	53.7	51.38	-2.32	-25.52
					Total S	Students	172		Average	6	3
			Instrume	ental Analys	le						
Instrumental Analysis 2001 DL	Spring 05	32.8	7.8	237	29.8	6	6	47	37	-10	-60
Instrumental Analysis 2001 DL	Spring 06	32.8	7.8	237	29	11.8	13	47	36	-11	-143
Instrumental Analysis 2001 CK	Spring 07	32.8	7.8	237	30.7	8.2	10	47	38	-9	-99
Instrumental Analysis 2001 CK	Spring 09	32.8	7.8	237	29.2	7.8	15	47	36	-11	-165
Instrumental Analysis 2001 CK	Spring 10	32.8	7.8	237	34.3	7.7	12	47	56	9	108
Instrumental Analysis 2009 DL	Spring 11	24.1	6.6	201	28.7	8.5	10	51	78	27	270
Instrumental Analysis 2009 DL	Spring 13	24.1	6.6		29.8	5.2	8	51	82	31	248
Instrumental Analysis 2009 KP	Spring 12	24.12	6.6		26.1	6.87	7	51	59	8	57
Instrumental Methods 2009 CK	Spring 14	24.12	6.57		26.4	5.68	18	51	67	16	282
Instrumental Analysis 2009 KP	Spring 15	24.12	6.57		22.3	6.8	12	51	42	-9.5	-114
Instrumental Methods 2009 CK	Spring 16	24.12	6.57		23.0	4.1	21	51	45	-6	-126
Instrumental Analysis 2009 KP	Spring 17	24.12	6.57		29.8	5.81	5	51	82	31	155
Instrumental Methods 2009 CK	Spring 18	24.12	6.57		27.0	3.4	7	51	69	18	126
Instrumental Analysis 2009 KP	Spring 19	24.12	6.57		26.9	5.1	11	51	69	18	198
					Total S	Students	156		Average	7	5

Institutional Performance MFAT %tile score

	# Students Overall current		verall	Pł current	nysical	Org	ganic	Inc current	organic	An current	National Mean		
			yr	cumulative	yr	cumulative	current yr	cumulative	yr	cumulative	yr	cumulative	
semester	number	Cumulative	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%-tile
S 1995	5	5	77	77	72	72	71	71	78	78	84	84	50
S-1996	6	11	87	82	91	82	71	71	83	81	96	91	50
S-1997	7	18	49	69	52	71	48	62	65	75	25	65	49
AY 97-98	10	28	95	79	94	79	93	73	91	80	91	74	49
AY 98-99	6	34	46	73	9	67	44	68	51	75	68	73	49
AY 99-00	9	43	66	71	59	65	64	67	75	75	71	73	49
AY 00-01	9	52	44	67	51	63	40	62	32	68	54	70	49
AY 01-02	6	58	85	69	76	64	80	64	76	69	99	73	50
AY 02-03	2	60	75	69	75	64	75	65	80	69	60	72	50
AY 03-04	9	69	55	67	60	64	25	59	50	66	65	71	50
AY 04-05	6	75	80	68	75	65	65	60	85	68	85	72	50
AY 05-06	4	79	88	69	82	66	85	61	78	68	84	73	50
AY 06-07	5	84	35	67	50	65	10	58	45	67	50	72	50
AY 07-08	11	95	55	66	80	66	40	56	70	67	60	70	50
AY 08-09	10	105	25	62	40	64	10	52	60	67	25	66	45
AY 09-10	14	119	60	62	80	66	35	50	65	67	65	66	50
AY 10-11	7	126	55	61	80	67	25	48	55	66	80	67	50
AY 11-12	5	131	77	62	88	67	59	49	82	66	62	66	46
AY 12-13	4	135	60	62	60	67	58	49	67	67	36	66	51
AY 13-14	4	139	96	63	98	68	87	50	99	67	98	66	46
AY 14-15	13	152	68	63	58	67	72	52	56	66	56	66	48
AY 15-16	10	162	61	63	65	67	59	52	56	66	60	65	53
AY 16-17	12	174	62	63	67	67	51	52	66	66	64	65	53
AY 17-18	6	180	64	63	64	67	58	53	65	66	60	65	53
AY 18-19	8	188	68	63	57	67	49	52	62	66	57	65	50

*AY11-12 and 12-13 were combined to get a large enough N

*AY12-13 and 13-14 were combined to get a large enough N